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New Stiff Matter Solutions to Einstein Equations 
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New exact solutions are presented to the Einstein field equations which are 
spherically symmetric and static, with a perfect fluid distribution of matter 
satisfying the equation of state p = p. One of the obtained solutions may only 
be used locally, the other represents the stellar interior globally and is singularity- 
free. 

1. I N T R O D U C T I O N  

With a high degree o f  precision the interior of  a star is a perfect fluid 
with stress-energy tensor  o f  the form 

T ~ = (p + p ) u ~ u  ~ + p g ~  

where u ~ is the velocity 4-vector, and p and p are, respectively, the energy 
density and the pressure o f  the fluid. Supposing that  the spherical star is 
static, i.e., excluding exploding and pulsating stars, demanding  that the star 
interior (as well as the star exterior) obey Einstein's field equations,  we 
must  then resolve these equations with a realistic equat ion o f  state in order  
to have a deeper  insight into the stellar interior. 

A realistic distribution o f  matter inside a star must  be a polytropic  fluid 
distribution. For  such a distribution the Einstein field equations require 
numerical  methods  (Tooper,  1964) and one only uses a semi-realistic 
equat ion o f  state, such as p = np (n >_ 1). With such a choice Ibanez  and 
Sanz (1982), Klein (1947), Buchdahl  and Land (1968), and Whittaker (1968) 
have already obtained exact closed solutions. In the special case o f  a stiff 
matter distribution o f  fluid, these solutions are not general, as already noted 
by Ibanez and Sanz. 
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The purpose of this paper is to obtain more general solutions with a 
stiff matter equation of state; two new solutions are then constructed. Study 
of their physical properties indicates the following. 

1. These solutions are physically reasonable, i.e., they present positive 
pressure and energy density. 

2. One of the obtained solutions represents the stellar interior globally, 
and is singularity-free at the center of the star. 

3. The second solution may be used locally, then representing only a 
partial region of the star. 

2. BASIC EQUATIONS 

The gravitational field being state and spherically symmetric, isotropic 
coordinates may be chosen leading to the metric 

ds 2 = - e  ~') dt2 + eX(r)( dr2 + r 2 d~~  2) (2.1) 

d l ' ~  2 =- d02+s in  2 0 dq;  2 (2.2) 

The field (Hajj-Boutros, 1986, 1987) equations read 

8~'p = e-A L--4-r(A'):+'x"/+'~'+-2- r ~'] (2.3) 

8 7 r p = e -  ~ [A"+ v"+ (v')2+A'+ u'] (2.4) 
L T T T  2r J 

! 2 2 A '  

where the prime denotes d /dr ,  p is the pressure, and p is the energy density. 
The condition of the isotropy of pressure leads to 

Setting 

x"+ ~,,+�89 ,)2_ (~,)2]- ~ , ~ , _ _ _  

R = log r 

the field equations become, respectively, 

e - ~ [ A  2 Af, . i , \  
8 ~ p = 7 ~ T + T  +~+ ) 

8,w =-p-k--?-- 4 
e -A .. 

8~w =-p-(x 

A'+u'  
=0 (2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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In turn, the isotropy of pressure condition becomes 

+/ ;  + �89 ~2) _~k  - 2 ( k +  }~) = 0 (2.11) 

where the dot denotes d / d R .  

The stiff matter equation of state implies 

X2 . X2 . 
X +-~-+ ~ = ~ - + - ~ +  A+ k (2.12) 

By suitable rearrangement we get 

~ / 2 + ~ -  ~ (2.13) 

Integrating (2.13), we get 

}~ = e~/2- 2 (2.14) 

Setting: 

y = e ~ / 2  (2.15) 

and introducing relations (2.14) and (2.15) into (2.11), we get 

4~ - 2y) = y3 _ 4y (2.16) 

Setting 

y = 2 v  

we obtain 

i5 - vf~ = v ( v  2 -  1) (2.17) 

which admits the particular solution 

v = 1 (2.18) 

(the solution v = - 1  must be rejected since y =2v  = e~). In this case and 
using formula (2.14) we get 

4 = 0  (2.19) 

Thus X = c, so we obtain the vacuum solution. 
More general solutions to (2.17) are 

v = th(aR +/3) (2.20) 

v = coth(aR +/3) (2.21) 
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where a satisfies the equation 

2a2+ a - 1 = 0 (2.22) 

/3 being a constant of integration. 
Introducing the values (2.20) and (2.21) into (2.14), we get, respectively, 

= 2[th(aR +/3) - 1] (2.23) 

}t = 2[coth(aR +/3) - 1] (2.24) 

Integrating, we obtain, successively, 

3, = 2{ log[chl /~(aR +/3)] - R} (2.25) 

3, = 2{log[ sh l/~( a R  +/3)] - R} (2.26) 

Taking into account the relation (2.7), we obtain, respectively, 

eX __ ch2/a(a log r+/3) 
r2 (2.27) 

eX _ sh2/=(a log r+/3)  
r2 (2.28) 

So the line element reads 

ds 2= - 4  th2(a log r+/3)  dt2-~ ch2/~(a log r+/3) r2 (dr2+ r 2 d~'~ 2) (2.29) 

[in the case (2.20), (2.27)]. 
For the case (2.21), (2.28) we get 

ds 2= - 4  cothZ(ce log r + f l )  dt2-~ sh2/'~(a log r + f l )  (dr2 + r2 dl)) (2.30) 
r 2 

Choosing Schwarzschild (or canonical) coordinates obtained making the 
change chl/~(a log r + / 3 ) ~  r in the case (2.29) of sh l /" (a  log r+/3)-~ r in 
the case (2.30), we obtain successively 

ds 2 = -4(1 - r -2~) dr2+ dr2+ r 2 d l )  2 (2.31) 

ds 2 = -4(1 + r -2~) dt2 + dr2 + r 2 df~ 2 (2.32) 
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3. PHYSICAL PROPERTIES OF THE SOLUTIONS 

Using formula (2.5) and the solutions (2.29) and (2.30), we get, 
respectively, 

1 { 2a /3) +2[ th (a  log r + / 3 ) -  1] 
8~ 'p--8~-p-  ch2/~( a log n+/3)  chZ(a log r+  

+ [th(a log r +/3) - 1 ]2} (3.1) 

1 [ - 2 a  
8~'p = 87rp -sh2/~(  a log r+/3)  sh2(a log r+/3) t- 2(coth(a log r+f l )  - 1) 

+ [coth(a log r +/3 ) - 1] 2} (3.2) 

where a [equation (2.22)] has the values 

a~ = + 1 / 2  (3.3) 

a2 = -1  (3.4) 

In order to get realistic solutions (p = p  > 0), we must choose respectively 
al in the case (3.1) and O~ 2 for (3.2). 

At this stage note that for the metric (2.29), r is within the range 
r ~ [1, oo[, since ch(a log r +/3) is always within the same range. 

In the case (2.30), r lies in the range [0, co[. 
Consequently, the solution (2.29) can be used locally for the region 

r ~ [1, oc[ and this may serve for studying the local region indicated above. 
This is not the case of the solution (2.30), which characterizes the whole 
interior region of a spherical star. 

I note here that the expression (3.24) is singularity-free for a log r + 13 --) 
0 and the energy density p goes to zero since - 2 / a  = 2 (a being negative 
in such a case). 

Now in order to compare the present solutions to that of Ibaney and 
Sanz, I rewrite the pressure and density in canonical coordinates and get 

2a ( ( r  2" - 1) u2 

\ r" 

in the case (3.1) and 

2 [-2c~ 2((r2~' + 1) u2 
8 rr p = r L "~-~- + \ r-- ~ 

in the case (3.2). 

! )  ~ { ( r 2 "  -1)'12 5tz'] 
~-It r: - 1 ) }  (3.5) 

1 ) + ( ( r 2 ~ + 1 )  1/2 
\ r--~ 1) 2 ] (3.6) 

So the present solutions differ from that of Ibanez and Sanz and 
consequently from that of Buchdahl and Land. 
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